RS485 通讯电缆 RVSP 2*1.0
RS485应用电路图
1 问题的提出
在应用系统中,RS-485半双工异步通信总线是被各个研发机构广泛使用的数据通信总线,它往往应用在集中控制枢纽与分散控制单元之间系统简图如图1所示
由于实际应用系统中,往往分散控制单元数量较多,分布较远,现场存在各种干扰,所 以通信的可靠性不高,再加上软硬件设计的不完善,使得实际工程应用中如何保障RS-485总线的通信的可靠性成为各研发机构的一块心病
在使用RS-485总线时如果简单地按常规方式设计电路,在实际工程中可能有以下两个问题出现一是通信数据收发的可靠性问题;二是在多机通信方式下,一个节点的故障(如死机),往往会使得整个系统的通信框架崩溃,而且给故障的排查带来困难
针对上述问题,我们对485总线的软硬件采取了具体的改进措施
2 硬件电路的设计
现以8031单片机自带的异步通信口,外接75176芯片转换成485总线为例其中为了实现总线与单片机系统的隔离,在8031的异步通信口与75176之间采用光耦隔离电路原理图如图2所示
充分考虑现场的复杂环境,在电路设计中注意了以下三个问题
2.1 SN75176 485芯片DE控制端的设计
由于应用系统中,主机与分机相隔较远,通信线路的总长度往往超过400米,而分机系统上电或复位又常常不在同一个时刻完成如果在此时某个75176的DE端电位为“1”,那么它的485总线输出将会处于发送状态,也就是占用了通信总线,这样其它的分机就无法与 主机进行通信这种情况尤其表现在某个分机出现异常情况下(死机),会使整个系统通信崩溃因此在电路设计时,应保证系统上电复位时75176的DE端电位为“0"由于8031在复位期间,I/O口输出高电平,故图2电路的接法有效地解决复位期间分机“咬”总线的问题
2.2 隔离光耦电路的参数选取
在应用系统中,由于要对现场情况进行实时监控及响应,通信数据的波特率往往做得较高(通常都在4800波特以上)限制通信波特率提高的“瓶颈”,并不是现场的导线(现场施工一般使用5类非屏蔽的双绞线),而是在与单片机系统进行信号隔离的光耦电路上此处采用TIL117电路设计中可以考虑采用高速光耦,如6N137、6N136等芯片,也可以优化普通光耦电路参数的设计,使之能工作在最佳状态例如:电阻R2、R3如果选取得较大,将会使光耦的发光管由截止进入饱和变得较慢;如果选取得过小,退出饱和也会很慢,所以这两只电阻的数值要精心选取,不同型号的光耦及驱动电路使得这两个电阻的数值略有差异,这一点在电路设计中要特别慎重,不能随意,通常可以由实验来定
2.3 485总线输出电路部分的设计
输出电路的设计要充分考虑到线路上的各种干扰及线路特性阻抗的匹配由于工程环境比较复杂,现场常有各种形式的干扰源,所以485总线的传输端一定要加有保护措施在电路设计中采用稳压管D1、D2组成的吸收回路,也可以选用能够抗浪涌的TVS瞬态杂波抑制器件,或者直接选用能抗雷击的485芯片(如SN75LBC184等)
考虑到线路的特殊情况(如某一台分机的485芯片被击穿短路),为防止总线中其它分机的通信受到影响,在75176的485信号输出端串联了两个20Ω的电阻R10、R11这样本机的硬件故障就不会使整个总线的通信受到影响
在应用系统工程的现场施工中,由于通信载体是双绞线,它的特性阻抗为120Ω左右,所以线路设计时,在RS-485网络传输线的始端和末端各应接1只120Ω的匹配电阻(如图2中R8),以减少线路上传输信号的反射
由于RS-485芯片的特性,接收器的检测灵敏度为± 200mV,即差分输入端VA-VB ≥ +200mV,输出逻辑1,VA-VB ≤-200mV,输出逻辑0;而A、B端电位差的绝对值小于200mV 时,输出为不确定如果在总线上所有发送器被禁止时,接收器输出逻辑0,这会误认为通信帧的起始引起工作不正常解决这个问题的办法是人为地使A端电位高于B两端电位,这样RXD的电平在485总线不发送期间(总线悬浮时)呈现唯一的高电平,8031单片机就不会被误中断而收到乱字符通过在485电路的A、B输出端加接上拉、下拉电阻R7、R9,即可很好地解决这个问题
rs485
智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断。究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。随后出现的RS485解决了这个问题。
目录
1特点
2接口
3电缆
4布网
5长度
6总线
7功能
8区别
9接口理解
1特点
1. RS-485的电气特性:采用差分信号负逻辑,逻辑"1”以两线间的电压差为+(2~6)V表示;逻辑"0"以两线间的电压差为-(2~6)V表示。接口信号电平比RS-232-C降低了,就不易损坏接口电路的芯片, 且该电平与TTL电平兼容,可方便与TTL电路连接。
2. RS-485的数据最高传输速率为10Mbps。
3. RS-485接口是采用平衡驱动器和差分,接收器的组合,抗共模干扰能力增强,即抗噪声干扰性好。
4. RS-485最大的通信距离约为1219m,最大传输速率为10Mbps,传输速率与传输距离成反比,在100KpbS的传输速率下,才可以达到最大的通信距离,如果需传输更长的距离,需要加485中继器。RS-485总线一般最大支持32个节点,如果使用特制的485芯片,可以达到128个或者256个节点,最大的可以支持到400个节点。
2接口
RS485接口组成的半双工网络,一般是两线制(以前有四线制接法,只能实现点对点的通信方式,现很少采用),多采用屏蔽双绞线传输。这种接线方式为总线式拓扑结构在同一总线上最多可以挂接32个结点。在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB-9(孔),与键盘连接的键盘接口RS485采用DB-9(针)。
另有一个问题是信号地,上述连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有二个原因:(1)共模干扰问题: RS-485接口采用差分方式传输信号,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。但人们往往忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。(2)EMI(电磁兼容性)问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),信号中的共模部分就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。
由于PC机默认的只带有RS232接口,有两种方法可以得到PC上位机的RS485电路:(1)通过RS232/RS485转换电路将PC机串口RS232信号转换成RS485信号,对于情况比较复杂的工业环境最好是选用防浪涌带隔离栅的产品。(2)通过PCI多串口卡,可以直接选用输出信号为RS485类型的扩展卡
RS485 通讯电缆 RVSP 2*1.0